

transverse strength workshop

New test approach to determine the transverse tensile strength of CFRP with regard to the size effect

Bodo Fiedler

Hamburg University of Technology Institute of Polymers and Composites

Online, October 20th 2022

Material & Testing

- Unidirectional prepreg material HexPly-M21/34%/UD194/T800S (Hexcel) \rightarrow [90]_n, where n is n = 3, 5,10,16 (specimens thickness)
- Three plates of each configuration are produced in order to regard statistical variations of the manufacturing process within the test results.

Transverse Tensile Strength R_{22}^T ?

Results

Transverse tensile strength versus specimen volume

9. Fachkongress Composite Simulation

Results

9. Fachkongress Composite Simulation

First transverse failure occurs at the most critical defect (weakest link) and second failure strength is higher than first failure strength.

The new method provides a more accurate measure of transverse tensile strength, which may be used along with Weibull scaling to predict transverse strength of smaller volumes e.g. 90° layers in cross-ply laminates during fatigue loading or micromechanical modelling.

Thank you for your attention!

Contact: fiedler@tuhh.de

Composites Communications 1 (2016) 54-59

New test approach to determine the transverse tensile strength of CFRP with regard to the size effect

Wilfried V. Liebig^{a,*}, Christian Leopold^a, Thomas Hobbiebrunken^b, Bodo Fiedler^a

^a Technische Universität Hamburg-Harburg, Institute of Polymer Composites, Denickestrasse 15, D-21073 Hamburg, Germany ^b Airbus Operations GmbH, Kreetslag 10, D-21129 Hamburg, Germany